1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
use super::internal::*;
use super::len::*;
use super::*;

pub struct Filter<M, FILTER_OP> {
    base: M,
    filter_op: FILTER_OP,
}

impl<M, FILTER_OP> Filter<M, FILTER_OP> {
    pub fn new(base: M, filter_op: FILTER_OP) -> Filter<M, FILTER_OP> {
        Filter {
            base: base,
            filter_op: filter_op,
        }
    }
}

impl<M, FILTER_OP> ParallelIterator for Filter<M, FILTER_OP>
    where M: ParallelIterator,
          FILTER_OP: Fn(&M::Item) -> bool + Sync
{
    type Item = M::Item;

    fn drive_unindexed<C>(self, consumer: C) -> C::Result
        where C: UnindexedConsumer<Self::Item>
    {
        let consumer1 = FilterConsumer::new(consumer, &self.filter_op);
        self.base.drive_unindexed(consumer1)
    }
}

impl<M, FILTER_OP> BoundedParallelIterator for Filter<M, FILTER_OP>
    where M: BoundedParallelIterator,
          FILTER_OP: Fn(&M::Item) -> bool + Sync
{
    fn upper_bound(&mut self) -> usize {
        self.base.upper_bound()
    }

    fn drive<C>(self, consumer: C) -> C::Result
        where C: Consumer<Self::Item>
    {
        let consumer1 = FilterConsumer::new(consumer, &self.filter_op);
        self.base.drive(consumer1)
    }
}

/// ////////////////////////////////////////////////////////////////////////
/// Consumer implementation

struct FilterConsumer<'f, C, FILTER_OP: 'f> {
    base: C,
    filter_op: &'f FILTER_OP,
}

impl<'f, C, FILTER_OP> FilterConsumer<'f, C, FILTER_OP> {
    fn new(base: C, filter_op: &'f FILTER_OP) -> Self {
        FilterConsumer {
            base: base,
            filter_op: filter_op,
        }
    }
}

impl<'f, ITEM, C, FILTER_OP: 'f> Consumer<ITEM> for FilterConsumer<'f, C, FILTER_OP>
    where C: Consumer<ITEM>,
          FILTER_OP: Fn(&ITEM) -> bool + Sync
{
    type Folder = FilterFolder<'f, C::Folder, FILTER_OP>;
    type Reducer = C::Reducer;
    type Result = C::Result;

    fn weighted(&self) -> bool {
        self.base.weighted()
    }

    /// Cost to process `items` number of items.
    fn cost(&mut self, cost: f64) -> f64 {
        self.base.cost(cost) * FUNC_ADJUSTMENT
    }

    fn split_at(self, index: usize) -> (Self, Self, C::Reducer) {
        let (left, right, reducer) = self.base.split_at(index);
        (FilterConsumer::new(left, self.filter_op),
         FilterConsumer::new(right, self.filter_op),
         reducer)
    }

    fn into_folder(self) -> Self::Folder {
        FilterFolder {
            base: self.base.into_folder(),
            filter_op: self.filter_op,
        }
    }

    fn full(&self) -> bool {
        self.base.full()
    }
}


impl<'f, ITEM, C, FILTER_OP: 'f> UnindexedConsumer<ITEM> for FilterConsumer<'f, C, FILTER_OP>
    where C: UnindexedConsumer<ITEM>,
          FILTER_OP: Fn(&ITEM) -> bool + Sync
{
    fn split_off(&self) -> Self {
        FilterConsumer::new(self.base.split_off(), &self.filter_op)
    }

    fn to_reducer(&self) -> Self::Reducer {
        self.base.to_reducer()
    }
}

struct FilterFolder<'f, C, FILTER_OP: 'f> {
    base: C,
    filter_op: &'f FILTER_OP,
}

impl<'f, C, FILTER_OP, ITEM> Folder<ITEM> for FilterFolder<'f, C, FILTER_OP>
    where C: Folder<ITEM>,
          FILTER_OP: Fn(&ITEM) -> bool + 'f
{
    type Result = C::Result;

    fn consume(self, item: ITEM) -> Self {
        let filter_op = self.filter_op;
        if filter_op(&item) {
            let base = self.base.consume(item);
            FilterFolder {
                base: base,
                filter_op: filter_op,
            }
        } else {
            self
        }
    }

    fn complete(self) -> Self::Result {
        self.base.complete()
    }

    fn full(&self) -> bool {
        self.base.full()
    }
}